Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(14): 10104-10112, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38533104

RESUMO

Selective electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is of great significance in the manufacture of fine chemicals, liquid fuels, pharmaceuticals, plastics, etc., but still suffers from the high potential input, resulting in high electricity consumption. Developing active, low-cost and stable electrocatalysts is crucial for this electrochemical reaction at low working potentials. Herein, a three-dimensional (3D) hierarchical Cu(OH)2@Ni3Co1-layered double hydroxide architecture with abundant oxygen vacancies (Vo) was synthesized by facile electrodeposition of Ni3Co1-LDH nanosheets on copper foam (CF) supported-Cu(OH)2 nanorods (CF/Cu(OH)2@Ni3Co1-LDH) for the selective electrooxidation of HMF to FDCA. The 3D hierarchical architecture of the Cu(OH)2 nanorod core loaded with Ni3Co1-LDH nanosheet shell facilitates the rapid transfer of charges and exposes more active sites. The synergistic effect of the core-shell nanoarray structure, atomic level dispersion of Ni and Co on LDH laminates, and rich Vo gives 98.12% conversion of HMF, 98.64% yield and 91.71% selectivity for FDCA at a low working potential of 1.0 V vs. RHE. In addition, CF/Cu(OH)2@Ni3Co1-LDH exhibits superior stability by maintaining 93.26% conversion of HMF, 93.65% yield and 91.57% selectivity of FDCA after eight successive cycles, showing the immense potential of utilizing electrochemical conversion for biomass.

2.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338418

RESUMO

Syndecan-1 (SDC1) modified lipid bilayer (LB)-coated mesoporous silica nanoparticles (MSN) to co-deliver gemcitabine (GEM) and honokiol (HNK) were prepared for the targeting treatment of pancreatic cancer. The encapsulation efficiencies of GEM and HNK in SDC1-LB-MSN-GEM/HNK were determined to be 60.3 ± 3.2% and 73.0 ± 1.1%. The targeting efficiency of SDC1-LB-MSN-GEM/HNK was investigated in BxPC-3 cells in vitro. The fluorescence intensity in the cells treated with SDC1-LB-MSN-Cou6 was 2-fold of LB-MSN-Cou6-treated cells, which was caused by SDC1/IGF1R-mediated endocytosis. As anticipated, its cytotoxicity was significantly increased. Furthermore, the mechanism was verified that SDC1-LB-MSN-HNK induced tumor cell apoptosis through the mitochondrial apoptosis pathway. Finally, the biodistribution, tumor growth inhibition, and preliminary safety studies were performed on BALB/c nude mice bearing BxPC-3 tumor models. The tumor growth inhibition index of SDC1-LB-MSN-GEM/HNK was 56.19%, which was 1.45-fold and 1.33-fold higher than that of the free GEM/HNK and LB-MSN-GEM/HNK treatment groups, respectively. As a result, SDC1-LB-MSN-GEM/HNK combined advantages of both GEM and HNK and simultaneously targeted and eliminated pancreatic cancerous and cancer-associated stromal cells. In summary, the present study demonstrated a new strategy of synergistic GEM and HNK to enhance the therapeutic effect of pancreatic cancer via the targeting depletion of tumor stroma.


Assuntos
Compostos Alílicos , Compostos de Bifenilo , Nanopartículas , Neoplasias Pancreáticas , Fenóis , Camundongos , Animais , Gencitabina , Bicamadas Lipídicas , Dióxido de Silício/uso terapêutico , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico
3.
ACS Appl Mater Interfaces ; 15(22): 27253-27263, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216444

RESUMO

Electrocatalytic efficiency and stability have emerged as critical issues in the ethanol oxidation reaction (EOR) of direct ethanol fuel cells. In this paper, Pd/Co1Fe3-LDH/NF as an electrocatalyst for EOR was prepared by a two-step synthetic strategy. Metal-oxygen bonds formed between Pd nanoparticles and Co1Fe3-LDH/NF guaranteed structural stability and adequate surface-active site exposure. More importantly, the charge transfer of the formed Pd-O-Co(Fe) bridge could effectively modulate the electrical structure of hybrids, improving the facilitated absorption of OH- radicals and oxidation of COads. Benefiting from the interfacial interaction, exposed active sites, and structural stability, the observed specific activity for Pd/Co1Fe3-LDH/NF (17.46 mA cm-2) was 97 and 73 times higher than those of commercial Pd/C (20%) (0.18 mA cm-2) and Pt/C (20%) (0.24 mA cm-2), respectively. Besides, the jf/jr ratio representing the resistance to catalyst poisoning was 1.92 in the Pd/Co1Fe3-LDH/NF catalytic system. These results provide insights into optimizing the electronic interaction between metals and the support of electrocatalysts for EOR.

4.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770843

RESUMO

The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such as Ni, Co, and Fe). In this work, high-performance NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) architectures with hollow nanocage structures as electrocatalysts for EOR were prepared via sacrificial ZIF-67 templates on CNTs. Comprehensive structural characterizations revealed that the as-synthesized NiCo-LDH@CNTs architecture displayed 3D hollow nanocages of NiCo-LDH and abundant interfacial structure between NiCo-LDH and CNTs, which could not only completely expose active sites by increasing the surface area but also facilitate the electron transfer during the electrocatalytic process, thus, improving EOR activity. Benefiting from the 3D hollow nanocages and interfacial structure fabricated by the sacrificial ZIF-67-templated method, the NiCo-LDH@CNTs-2.5% architecture exhibited enhanced electrocatalytic activity for ethanol oxidation compared to single-component NiCo-LDH, where the peak current density was 11.5 mA·cm-2, and the jf/jb value representing the resistance to catalyst poisoning was 1.72 in an alkaline environment. These results provide a new perspective on the fabrication of non-precious metal electrocatalysts for EOR in DEFCs.

5.
Langmuir ; 38(46): 14227-14237, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36321920

RESUMO

Clay minerals are distributed in Earth's crust and troposphere and in Martian crust where temperature varies. Understanding the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite (Mnt) upon temperature changes is fundamental for studying its surface reactivity and interaction in specific surroundings. However, such an issue remains poorly understood. Here, in situ high- and low-temperature Fourier transform infrared (HT- and LT-FTIR) spectroscopy and X-ray diffraction (HT- and LT-XRD) were performed to study the evolution of chemical bonding and crystalline swelling-shrinkage of sodium-montmorillonite (NaMnt) upon temperature changes. The FTIR results show that the hydroxyl content in NaMnt decreased when the temperature increased from 20 to 700 °C, while it is independent of temperature from 0 to -150 °C. The formation of hydroxyls at the "broken" layer edges of NaMnt is related to adsorbed water molecules on the surfaces, and its content increased when the particle size of the NaMnt decreased. The water molecules in the interlayer space of NaMnt could bond to the tetrahedral sheet of NaMnt through Si2O-H2O bonds. HT- and LT-XRD results reveal that all of those water molecules in NaMnt were removed after heating to 100 °C in the heating chamber. The NaMnt was transformed from a state of monolayer interlayer water molecules at 20 °C to a dehydrated state at 100 °C, and then to a dehydroxylated state at 700 °C. Accordingly, the basal spacings of NaMnt were changed from 1.27 to 0.97 nm and then to 0.96 nm, respectively. When NaMnt was cooled from 20 to -268 °C, a crystalline swelling of NaMnt occurred with an increase of 0.03 nm of basal spacing. This work demonstrates that high/low temperature has a remarkable effect on the hydroxyls and the water molecules in NaMnt, which in turn affects its swelling-shrinkage performance. These findings provide some in-depth understanding of the changes of chemical bonding and crystalline swelling-shrinkage of montmorillonite upon temperature changes and the reasons behind these, which might be helpful for the design of engineering Mnt in high-/low-temperature applications.

6.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431469

RESUMO

As anion-exchange materials, layered double hydroxides (LDHs) have attracted increasing attention in the fields of selective adsorption and separation, controlled drug release, and environmental remediation. The metal cation composition of the laminate is the essential factor that determines the anion-exchange performance of LDHs. Herein, we review the regulating effects of the metal cation composition on the anion-exchange properties and LDH structure. Specifically, the internal factors affecting the anion-exchange performance of LDHs were analyzed and summarized. These include the intercalation driving force, interlayer domain environment, and LDH morphology, which significantly affect the anion selectivity, anion-exchange capacity, and anion arrangement. By changing the species, valence state, size, and mole ratio of the metal cations, the structural characteristics, charge density, and interlayer spacing of LDHs can be adjusted, which affect the anion-exchange performance of LDHs. The present challenges and future prospects of LDHs are also discussed. To the best of our knowledge, this is the first review to summarize the essential relationship between the metal ion composition and anion-exchange performance of laminates, providing important insights for regulating the anion-exchange performance of LDHs.

7.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207944

RESUMO

Porous structure and surface defects are important to improve the performance of supercapacitors. In this study, a facile pathway was developed for high-performance supercapacitors, which can produce transition metal hydroxides (LDHs) with abundant porous structure and surface defects. The NiCo-SDBS-LDH was prepared by one-step hydrothermal reaction using sodium dodecylbenzene sulfonate (SDBS) as anionic surfactant. And then, three dimensional (3D) interconnected porous flower-like 3D-NiCo-SDBS-LDH microspheres were designed and synthesized using the gas-phase hydrazine hydrate reduction method. Results showed that the hydrazine hydrate reduction not only introduces a large number of pores into 3D-NiCo-SDBS-LDH microspheres and causes the formation of oxygen vacancies, but it also roughens the surface of the microspheres. All these changes contribute to the enhancement of electrochemical activity of 3D-NiCo-SDBS-LDH; the NiCo-SDBS-LDH electrode after hydrazine hydrate treatment (3D-NiCo-SDBS-LDH) exhibits a higher specific capacitance of 1148 F·g-1 at 1 A·g-1 (about 1.46 times larger than that of NiCo-SDBS-LDH) and excellent long cycle life with 94% retention after 4000 cycles. Moreover, the assembled 3D-NiCo-SDBS-LDH//AC (active carbon) asymmetric supercapacitor (ASC) achieves remarkable energy density of 73.14 W h·kg-1 at 800 W·kg-1 and long-term cycling stability of 95.5% retention for up to 10,000 cycles. The outstanding electrochemical performance can be attributed to the synergy between the rich porous structure and the roughened surface that has been created by the hydrazine hydrate treatment.

8.
RSC Adv ; 11(20): 12392-12397, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423758

RESUMO

Electrolysis of water is currently one of the cleanest and most efficient ways to produce high-purity hydrogen. The oxygen evolution reaction (OER) at the anode of electrolysis is the key factor affecting the reaction efficiency, which involves the transfer of four electrons and can slow down the overall reaction process. In this work, using nickel foam coated with MXene (Ti3C2T x ) as the carrier, a three-dimensional flower-shaped layered double hydroxide (NiCo-LDH) is grown on Ti3C2T x by a hydrothermal method to fabricate a NiCo-LDH/Ti3C2T x /NF hybrid electrocatalyst for enhanced OER performance. The results reveal that the hybrid electrocatalyst has excellent OER activity in alkaline solution, in which a low overpotential of 223 mV and a small Tafel slope of 47.2 mV dec-1 can be achieved at a current density of 100 mA cm-2. The interface interaction and charge transfer between Ti3C2T x and NiCo-LDH can accelerate the electron transfer rate during the redox process and improve the catalytic activity of the overall reaction. This NiCo-LDH/Ti3C2T x /NF hybrid electrocatalyst may have important research significance and great application potential in catalytic electrolysis of water.

9.
ACS Appl Mater Interfaces ; 11(51): 48039-48053, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31791127

RESUMO

Both nanocrystals and carbon materials have attracted considerable attention in lithium-ion batteries (LIBs) because of their fast kinetics for lithium storage or long-life cycles. However, the easy aggregation of nanocrystals and high-temperature doping process of carbon materials seriously hindered their application in LIBs. Here, we report the development of unprecedented TiO2-x@C nanocomposite electrodes through a unique "melting low-temperature pyrolysis" strategy. It is found that the continuous and interconnected three-dimensional amorphous carbon frameworks (3DCFs) in the composites are closely connected with TiO2 nanocrystals by Ti-O-C covalent bonding, forming robust 3D framework architectures. Interestingly, we find that TiO2 nanocrystals can greatly improve the pseudocapacitance of TiO2-x@C nanocomposite electrodes with increasing cycles, which significantly exceeds previously reported TiO2-based anodes and carbon materials. Furthermore, for the first time, the unusual improvement of pseudocapacitance of TiO2-x@C electrodes is carefully investigated by means of dQ/dV curves and electrochemical kinetic analysis to reveal the extra contribution of lithium storage. 3DCF, a "lithium-ion reservoir", possesses an unexpected capacity enhancement behavior that is triggered by TiO2 nanocrystals and exhibits bicontinuous pathways for both rapid ion and electron transport. In this case, TiO2 nanocrystals stabilizing the 3DCF acted as a conductive agent during charge and discharge. Our findings confirm that the 3DCF triggered by TiO2 nanocrystals boosted the electrochemical performance of TiO2-x@C nanocomposite electrodes, especially the pseudocapacitance enhancement. The unique characteristics of ingenious combination of TiO2 nanocrystals and amorphous carbon materials make them attain superior electrochemical properties in all known TiO2- and carbon-based anodes (289 mA h g-1 at 5 A g-1 after 4000 cycles). Above all, our findings reveal previously ignored fundamental aspects of pseudocapacitance improvement of nanocomposite electrodes and offer new hope for structural design and carbon coating process of high-performance anode materials.

10.
Colloids Surf B Biointerfaces ; 183: 110414, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31404790

RESUMO

Pickering emulsions have received widespread attention for encapsulating lipophilic guests in the biomedical and food fields. However, control of the stabilities and demulsification of Pickering emulsions to allow the release of encapsulated species remains a challenge in gastrointestinal conditions. In this work, phosphatidylcholine-kaolinite was prepared by modification of natural kaolinite with phosphatidylcholine and was used as an emulsifier to stabilize medium-chain triglyceride (MCT)/water Pickering emulsions for encapsulating curcumin, a natural antioxidant drug. Simulated gastric and intestinal digestion and a cell uptake assay were implemented for the curcumin-loaded MCT/water Pickering emulsion to study its demulsification and the bioavailability of curcumin. The results revealed that the wettability of phosphatidylcholine-kaolinite could be tailored by controlling the modification temperature so that it could control the emulsion stability. The prepared phosphatidylcholine-kaolinite, with a three-phase contact angle of 123°, was an optimal emulsifier for the enhanced stabilization of the MCT/water Pickering emulsion, especially in the presence of gastric acid. The phosphatidylcholine-kaolinite distributed at the water-oil interface and formed a dense shell structure on the surfaces of the emulsion droplets, controlling the demulsification efficiency to release the encapsulated curcumin. Only 18.9% of the curcumin was released in the simulated gastric conditions after 120 min of digestion due to the demulsification of the MCT/water Pickering emulsion, while it was completely released after 150 min of digestion in simulated intestinal conditions, as expected. This Pickering emulsion stabilized by phosphatidylcholine-kaolinite is a promising delivery system for lipophilic foods or drugs to enhance their bioavailability.


Assuntos
Antioxidantes/metabolismo , Curcumina/metabolismo , Preparações de Ação Retardada , Composição de Medicamentos/métodos , Caulim/química , Fosfatidilcolinas/química , Antioxidantes/química , Antioxidantes/farmacologia , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Liberação Controlada de Fármacos , Emulsificantes/química , Emulsões , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Suco Gástrico/química , Humanos , Cinética , Temperatura , Triglicerídeos/química , Água/química
11.
J Econ Entomol ; 112(6): 2790-2796, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314897

RESUMO

Tomato yellow leaf curl virus (TYLCV), a begomovirus (genus Begomovirus) is the causal agent of tomato yellow leaf curl disease (TYLCD), which causes severe damage to tomato (Solanum lycopersicum) crops throughout tropical and subtropical regions of the world. TYLCV is transmitted by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a circulative and persistent manner. Our previous studies showed that tomato flavonoids deter B. tabaci oviposition, but the effects of tomato flavonoids on the settling and feeding behavior of B. tabaci and on its transmission of TYLCV are unknown. Using two near-isogenic tomato lines that differ greatly in flavonoid levels, we found that high flavonoid production in tomato deterred the landing and settling of B. tabaci. Moreover, electrical penetration graph studies indicated that high flavonoid levels in tomato reduced B. tabaci probing and phloem-feeding efficiency. As a consequence, high flavonoid levels in tomato reduced the primary and secondary spread of TYLCV. The results indicate that tomato flavonoids provide antixenosis resistance against B. tabaci and that the breeding of such resistance in new varieties could enhance TYLCD management.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Flavonoides , Insetos Vetores , Doenças das Plantas
12.
ACS Appl Mater Interfaces ; 11(14): 13405-13415, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30893996

RESUMO

α-MoO3 has gained growing attention as an anode material of lithium-ion batteries (LIBs) because it has a high theoretical specific capacity of 1111 mA h g-1 and unique layer structure. However, the electrochemical reactions of MoO3 exhibit sluggish kinetics and structural instability caused by pulverization during charge and discharge. Herein, we report new two-dimensional Cr-doped MoO2.5(OH)0.5 (doped MoO2.5(OH)0.5) ultrathin nanosheets prepared by a facile hydrothermal process. The formation of the ultrathin nanosheets was clarified by a "doping-adsorption" model. Compared with doped MoO3, doped MoO2.5(OH)0.5 has larger expanded spacing of the {0 l0} crystal planes for fast Li+ storage. The electrodes after cycling were investigated by ex situ transmission electron microscopy in combination with X-ray photoelectron spectroscopy analysis to reveal the reversible conversion reaction mechanism of doped MoO2.5(OH)0.5 nanosheets. Interestingly, for doped MoO2.5(OH)0.5 nanosheet electrodes, it was found that the as-formed intermediate Li xMoO3 nanodots were well-dispersed in the mesoporous amorphous matrix and had an expanded (040) crystal plane after 10 cycles. These unique structural features increased the effective surface of intermediate products Li xMoO3 to react with Li+ and shortened the diffusion length and thus promoted the electrochemical reactions of doped MoO2.5(OH)0.5. Additionally, the presence of Cr also played a critical role in the reversible decomposition of Li2O and enhanced specific capacity. When employed as an anode in LIBs, doped MoO2.5(OH)0.5 nanosheets show superior reversible capacity (294 mA h g-1 at 10 A g-1 after 2000 cycles). Moreover, the reversible capacity after electrochemical activation is quite stable throughout the cycling, thereby presenting a potential candidate anode material for LIBs.

13.
Dalton Trans ; 43(12): 4711-9, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24468963

RESUMO

Anatase TiO2 mesocrystals with a Wulff construction of nearly 100% exposed {101} facets were successfully synthesized by a facile, green solvothermal method. Their morphology, and crystal structure are characterized by powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Accordingly, a possible growth mechanism of anatase TiO2 mesocrystals is elucidated in this work. The as-prepared single anatase TiO2 mesocrystal's mean center diameter is about 500 nm, and the length is about 1 µm. They exhibit high light adsorbance, high reflectance and low transmittance in the visible region due to the unique nearly 100% exposed {101} facets. When utilized as the scattering layer in dye-sensitized solar cells (DSSCs), such mesocrystals effectively enhanced light harvesting and led to an increase of the photocurrent of the DSSCs. As a result, by using an anatase TiO2 mesocrystal film as a scattering overlayer of a compact commercial P25 TiO2 nanoparticle film, the double layered DSSCs show a power conversion efficiency of 7.23%, indicating a great improvement compared to the DSSCs based on a P25 film (5.39%) and anatase TiO2 mesocrystal films, respectively. The synergetic effect of P25 and the mesocrystals as well as the latters unique feature of a Wulff construction of nearly 100% exposed (101) facets are probably responsible for the enhanced photoelectrical performance. In particular, we explore the possibility of the low surface area and exposed {101} facets as an efficient light scattering layer of DSSCs. Our work suggests that anatase TiO2 mesocrystals with the Wulff construction is a promising candidate as a superior scattering material for high-performance DSSCs.

14.
Materials (Basel) ; 3(9): 4580-4606, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28883342

RESUMO

Nanocomposites have been shown to significantly reduce the peak heat release rate, as measured by cone calorimetry, for many polymers but they typically have no effect on the oxygen index or the UL-94 classification. In this review, we will cover what is known about the processes by which nanocomposite formation may bring this about. Montmorillonite will be the focus in this paper but attention will also be devoted to other materials, including carbon nanotubes and layered double hydroxides. A second section will be devoted to combinations of nanocomposite formation with conventional (and unconventional) fire retardants. The paper will conclude with a section attempting to forecast the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...